Reclamation Manual: Design and construction, pt. 2. Engineering design: Design supplement no. 2: Treatise on dams; Design supplement no. 3: Canals and related structures; Design supplement no. 4: Power systems; Design supplement no. 5: Field installation procedures; Design supplement no. 7: Valves, gates, and steel conduits; Design supplement no. 8: Miscellaneous mechanical equipment and facilities; Design supplement no. 9: Buildings; Design supplement no. 10: Transmission structures; Design supplement no. 11: Railroads, highways, and camp facilities, Volume 10

Front Cover

From inside the book

Contents


Other editions - View all

Common terms and phrases

Popular passages

Page 319 - Thus the maximum shearing stress acts on the plane bisecting the angle between the largest and smallest principal stresses and is equal to half the difference between these principal stresses. If we compute the normal stresses on these planes and designate them by Nt we get, from (3.4.1...
Page 437 - If the number is less than 1, make the characteristic of the logarithm negative, and one unit more than the number of zeros between the decimal point and the first significant figure of the given number.
Page 54 - Uplift pressures vary as a straight line from full reservoir pressure at the upstream face of the dam to zero or tailwater pressure at the downstream face.
Page 329 - The mix should be proportioned to produce concrete of sufficient strength to meet the design requirements multiplied by a safety factor.
Page 108 - The distribution of internal hydrostatic pressure along a horizontal section through a gravity dam is assumed to vary linearly from full reservoir pressure at the upstream face to zero or tail-water pressure at the downstream face, and to act over the entire area of the section.
Page 41 - Water Pressures on Dams During Earthquakes," Trans. Am. Soc. CE, Vol. 98, 1933, pp. 418-472.
Page 317 - Let ./, m, and n denote the direction cosines of the oblique plane ABC. Then, j = cosine of the angle between the normal to ABC and the X axis. m = cosine of the angle between the normal to ABC and the Y axis. n = cosine of the angle between the normal to A BC and the Z axis.
Page 8 - The trial -load method is based on the assumption that the water load is divided between arch and cantilever elements; that the division may or may not be constant from abutment to abutment for each horizontal element; and that the true division of load is the one which causes equal arch and cantilever deflections at all points in all arches and cantilevers instead of at the crown cantilever only. Furthermore, the...
Page 125 - The analysis of arch elements by means of integrals resulted in an appreciable saving of time, especially after effects of tangential shear and twist were included. A further saving in time was effected by computing tables of integrals needed in the calculations and tabulating functions for different types of unit loads which can be used in building up total loads carried by arch elements.
Page 39 - In this case, concrete weight does not affect trial-load adjustments and need not be considered until stresses are computed. If grouting is started before completion, deflections due to weights of concrete added subsequently must be included in the analysis. Likewise, when cracking of the cantilevers is assumed to take place, concrete weight becomes a factor in computing deflections of vertical elements.

Bibliographic information