The Principles of Mathematics

Front Cover
W. W. Norton & Company, 1996 - Mathematics - 534 pages
Pure Mathematics is the class of all propositions of the form p implies q, where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants. And logical constants are all notions definable in terms of the following: Implication, the relation of a term to a class of which it is a member, the notion of such that, the notion of relation, and such further notions as may be involved in the general notion of propositions of the above form. In addition to these, mathematics uses a notion which is not a constituent of the propositions which it considers, namely the notion of truth.
 

What people are saying - Write a review

LibraryThing Review

User Review  - Landric - LibraryThing

This is a valuable work for one interested in the foundations of mathematics but lacking a facility with the notation of symbolic logic. It is in effect a textual exposition of the ideas given a thorough and rigorous treatment in the Principia Mathematica, written jointly with Whithead [qv] Read full review

Contents

III
3
IV
4
VI
5
VII
6
VIII
7
IX
8
X
10
XI
11
CCXIV
271
CCXV
272
CCXVI
274
CCXVII
276
CCXVIII
277
CCXX
278
CCXXI
279
CCXXII
280

XII
13
XIII
14
XV
15
XVI
16
XVII
17
XVIII
18
XIX
19
XX
20
XXI
21
XXII
23
XXIV
24
XXV
25
XXVI
26
XXVIII
27
XXIX
28
XXX
29
XXXI
31
XXXII
32
XXXIII
33
XXXIV
34
XXXV
35
XXXVI
36
XXXVII
38
XXXVIII
39
XXXIX
40
XL
42
XLI
43
XLII
44
XLIII
45
XLIV
46
XLV
47
XLVII
49
XLVIII
50
XLIX
53
L
54
LI
55
LII
56
LIII
58
LIV
59
LV
61
LVI
62
LVII
63
LVIII
64
LIX
66
LX
67
LXI
68
LXII
69
LXIII
72
LXIV
73
LXV
76
LXVI
77
LXVIII
78
LXIX
79
LXX
80
LXXI
82
LXXII
83
LXXIII
84
LXXIV
86
LXXV
88
LXXVI
89
LXXVII
91
LXXVIII
92
LXXX
93
LXXXI
95
LXXXII
96
LXXXIII
97
LXXXIV
98
LXXXV
99
LXXXVI
101
LXXXVII
102
LXXXVIII
103
LXXXIX
104
XC
105
XCI
106
XCII
109
XCIII
111
XCIV
112
XCV
114
XCVI
115
XCVII
117
XCVIII
118
XCIX
119
C
121
CI
123
CII
124
CIII
125
CV
127
CVI
129
CVII
130
CVIII
131
CIX
132
CX
133
CXII
135
CXIII
137
CXIV
138
CXV
140
CXVI
141
CXVII
143
CXVIII
144
CXIX
146
CXX
149
CXXI
150
CXXIII
151
CXXIV
152
CXXV
155
CXXVI
157
CXXVII
158
CXXVIII
159
CXXIX
160
CXXX
162
CXXXI
164
CXXXII
166
CXXXIII
167
CXXXIV
170
CXXXV
171
CXXXVI
173
CXXXVII
174
CXXXVIII
176
CXXXIX
177
CXL
178
CXLI
179
CXLII
181
CXLIII
182
CXLIV
184
CXLVII
185
CXLVIII
186
CXLIX
187
CL
188
CLI
189
CLII
190
CLIII
192
CLIV
193
CLV
194
CLVI
197
CLVII
199
CLVIII
200
CLIX
203
CLX
204
CLXII
205
CLXIII
207
CLXIV
208
CLXV
210
CLXVI
211
CLXVII
212
CLXVIII
213
CLXIX
214
CLXX
215
CLXXI
216
CLXXII
218
CLXXIII
219
CLXXV
220
CLXXVI
221
CLXXVII
222
CLXXIX
224
CLXXX
226
CLXXXI
227
CLXXXII
228
CLXXXIII
229
CLXXXV
231
CLXXXVI
232
CLXXXVII
234
CLXXXVIII
236
CLXXXIX
237
CXC
238
CXCI
239
CXCII
240
CXCIII
242
CXCIV
243
CXCV
244
CXCVI
245
CXCVII
246
CXCVIII
247
CXCIX
248
CC
249
CCI
252
CCII
253
CCIII
254
CCIV
255
CCV
257
CCVI
259
CCVII
260
CCVIII
262
CCIX
263
CCX
264
CCXI
267
CCXII
269
CCXIII
270
CCXXIII
282
CCXXIV
283
CCXXV
285
CCXXVI
287
CCXXVII
288
CCXXVIII
290
CCXXIX
291
CCXXX
293
CCXXXI
296
CCXXXII
298
CCXXXIII
299
CCXXXIV
300
CCXXXV
303
CCXXXVI
304
CCXXXVII
306
CCXXXVIII
307
CCXXXIX
309
CCXL
310
CCXLI
311
CCXLII
312
CCXLIII
314
CCXLIV
315
CCXLV
317
CCXLVI
319
CCXLVII
320
CCXLVIII
321
CCL
322
CCLI
323
CCLII
325
CCLIII
326
CCLIV
328
CCLV
329
CCLVII
330
CCLVIII
331
CCLIX
332
CCLX
334
CCLXI
335
CCLXII
337
CCLXIII
338
CCLXIV
339
CCLXV
340
CCLXVI
341
CCLXVII
342
CCLXVIII
344
CCLXIX
346
CCLXX
347
CCLXXI
348
CCLXXIII
349
CCLXXIV
350
CCLXXV
351
CCLXXVI
352
CCLXXVII
353
CCLXXVIII
355
CCLXXIX
356
CCLXXX
357
CCLXXXI
358
CCLXXXII
359
CCLXXXIII
360
CCLXXXIV
361
CCLXXXV
362
CCLXXXVI
363
CCLXXXVII
364
CCLXXXVIII
366
CCLXXXIX
367
CCXC
368
CCXCI
369
CCXCII
371
CCXCIII
372
CCXCV
374
CCXCVI
375
CCXCVII
376
CCXCVIII
377
CCXCIX
378
CCC
379
CCCI
381
CCCII
382
CCCIII
384
CCCIV
385
CCCV
386
CCCVI
388
CCCVII
389
CCCVIII
390
CCCX
391
CCCXI
392
CCCXII
393
CCCXIII
394
CCCXIV
395
CCCXV
396
CCCXVI
397
CCCXVII
398
CCCXVIII
399
CCCXIX
400
CCCXX
401
CCCXXI
402
CCCXXII
403
CCCXXIII
404
CCCXXIV
405
CCCXXV
406
CCCXXVI
407
CCCXXVII
408
CCCXXVIII
409
CCCXXIX
410
CCCXXX
411
CCCXXXI
413
CCCXXXII
414
CCCXXXIII
415
CCCXXXIV
416
CCCXXXV
417
CCCXXXVI
419
CCCXXXVII
420
CCCXXXVIII
421
CCCXXXIX
423
CCCXL
425
CCCXLI
426
CCCXLII
427
CCCXLIII
429
CCCXLIV
430
CCCXLV
432
CCCXLVI
434
CCCXLVII
437
CCCXLVIII
438
CCCXLIX
440
CCCL
441
CCCLI
442
CCCLII
445
CCCLIII
446
CCCLIV
448
CCCLV
449
CCCLVI
451
CCCLVII
452
CCCLVIII
454
CCCLX
456
CCCLXI
457
CCCLXII
458
CCCLXIII
461
CCCLXIV
463
CCCLXV
465
CCCLXVI
466
CCCLXVII
467
CCCLXVIII
468
CCCLXIX
469
CCCLXX
471
CCCLXXI
472
CCCLXXII
473
CCCLXXIII
474
CCCLXXV
475
CCCLXXVI
476
CCCLXXVII
477
CCCLXXVIII
478
CCCLXXIX
480
CCCLXXX
482
CCCLXXXI
483
CCCLXXXII
485
CCCLXXXIII
486
CCCLXXXIV
487
CCCLXXXV
488
CCCLXXXVI
489
CCCLXXXVII
490
CCCLXXXIX
491
CCCXCI
492
CCCXCII
494
CCCXCIII
495
CCCXCIV
496
CCCXCV
497
CCCXCVI
501
CCCXCVII
502
CCCXCIX
503
CD
504
CDI
505
CDII
507
CDIII
508
CDIV
510
CDVI
512
CDVII
513
CDVIII
514
CDIX
515
CDX
516
CDXI
517
CDXII
518
CDXIII
519
CDXIV
520
CDXVI
523
CDXVII
525
CDXVIII
526
CDXIX
527
CDXX
529
Copyright

Other editions - View all

Common terms and phrases

About the author (1996)

Bertrand Arthur William Russell (1872-1970) was a British philosopher, logician, essayist and social critic. He was best known for his work in mathematical logic and analytic philosophy. Together with G.E. Moore, Russell is generally recognized as one of the main founders of modern analytic philosophy. Together with Kurt Gödel, he is regularly credited with being one of the most important logicians of the twentieth century. Over the course of a long career, Russell also made contributions to a broad range of subjects, including the history of ideas, ethics, political and educational theory, and religious studies. General readers have benefited from his many popular writings on a wide variety of topics. After a life marked by controversy--including dismissals from both Trinity College, Cambridge, and City College, New York--Russell was awarded the Order of Merit in 1949 and the Nobel Prize for Literature in 1950. Noted also for his many spirited anti-nuclear protests and for his campaign against western involvement in the Vietnam War, Russell remained a prominent public figure until his death at the age of 97.

Bibliographic information