Mathematical Foundations of Elasticity

Front Cover
Dover, 1994 - Technology & Engineering - 556 pages
0 Reviews

This advanced-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It is directed to mathematicians, engineers and physicists who wish to see this classical subject in a modern setting with examples of newer mathematical contributions. Prerequisites include a solid background in advanced calculus and the basics of geometry and functional analysis.
The first two chapters cover the background geometry ? developed as needed ? and use this discussion to obtain the basic results on kinematics and dynamics of continuous media. Subsequent chapters deal with elastic materials, linearization, variational principles, the use of functional analysis in elasticity, and bifurcation theory. Carefully selected problems are interspersed throughout, while a large bibliography rounds out the text.
Jerrold E. Marsden is Professor of Mathematics, University of California, Berkeley. Thomas J. R. Hughes is Professor of Mechanical Engineering, Stanford University.

What people are saying - Write a review

We haven't found any reviews in the usual places.

Other editions - View all

References to this book

All Book Search results »

About the author (1994)

Jerrold E. Marsden is Professor of Mathematics, University of California, Berkeley. Thomas J. R. Hughes is Professor of Mechanical Engineering, Stanford University.

Bibliographic information