## Continuum Mechanics: Elasticity, Plasticity, ViscoelasticityMost books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems. |

### What people are saying - Write a review

We haven't found any reviews in the usual places.

### Other editions - View all

### Common terms and phrases

alternative applies assumed balance Banach space base vectors becomes body called coefficients complete components condition consider constant constitutive relations continuous coordinates crack defined definition deformation denote depends derivative determined direction displacement eigenvalues eigenvectors elastic element energy equal equations example exists expressed field FIGURE fixed follows force formula function given gives gradient hardening hold independent indices initial integration invariants isotropic material linear loading mapping material matrix measure mechanics method modulus motion normal basis notation Note obtained occurs particle particular physical plane plastic plastic strain positive principal problem range reference configuration representation requirement respect result rotation satisfy scalar shear solution space strain stress stress tensor stretch Suppose symmetric temperature tensile test tensor theory unit vector yield yield surface zero ду