Page images
PDF
EPUB

Washington Territory, but which is a smaller and useless plant, easily distinguished by its ferruginous, scurfy leaves.

GOOSEBERRIES AND CURRANTS.-In the valley of the Mississippi and in the mountains of the Far West, a large number of species of Ribes are found which, for the most part would be called gooseberries, but among them at least one should be considered as a currant. Some of these plants are showy and interesting, but they are of very little utility. Several of them fruit abundantly, but the berries are insipid or even disagreeable to the taste. In the drier portions of Oregon and Northern California a species of Ribes is very abundant and a noticeable feature in the vegetation. It forms tufts or thickets which in the late summer are loaded with red and attractive fruit, but it is only a disappointment, the flavor being flat and insipid, so that it is never eaten by man. In the mountains of Utah I have seen a large and strong species bearing in great abundance a nearly smooth, purplish-brown berry. No small fruit could be more inviting, but it is never eaten; the taste is disagreeable, and the inhabitants have a conviction that it is poisonous.

NUTS.-The Indians of the Eastern States valued more highly, and gathered more abundantly than the whites have since done, the chestnuts, hickory-nuts, walnuts, and butternuts that are here so abundant. For these the Western Indians are compelled to content themselves with acorns and pine-nuts, for there are no chestnut nor hickory trees in all the Western country. The only nuts, indeed, to be found there are the chinquapin of Oregon (Castanopsis chrysophylla) and the nogal of Arizona, New Mexico, and Texas (Juglans rupestris), the latter a perfect "black walnut," but not larger than a boy's marble.

PINE-BARK.-One article of subsistence sometimes employed by the Indians is only resorted to when they are driven to great straits by hunger. Around many of the watering-places in the pine-forests of Oregon and California the trees of Pinus ponderosa may be seen stripped of their bark for a space of three or four feet near the base of the trunk. This has been accomplished by cutting with a hatchet a line around the tree as high up as one could conveniently reach, and another lower down, so that the bark, severed above and below, could be removed in strips. At certain seasons of the year a mucilaginous film (the liburnum) separates the bark from the wood of the trunk. Part of this film adheres to each surface and may be scraped off. The resulting mixture of mucilage-cells and half-formed wood is nutritious and not unpalatable, so that, as a last resort, it may be used as a defense against starvation. The frequency with which signs of its having been resorted to are met with is a striking indication of the uncertainties and irregularities of the supply department among savages.

ΟΝ

SCIENCE AND REVELATION.*

BY PROFESSOR G. G. STOKES, P. R. S.

N the present anniversary, which is the conclusion of my first year of office as President of this Institute, I propose to address a few words to you bearing on the object of the Institute, and on the spirit in which, as I conceive, that object is best carried out.

The highest aim of physical science is, as far as may be possible, to refer observed phenomena to their proximate causes. I by no means say that this is the immediate, or even necessarily the ultimate, object of every physical investigation. Sometimes our object is to investigate facts, or to co-ordinate known facts, and endeavor to discover empirical laws. These are useful as far as they go, and may ultimately lead to the formation of theories which in the end so stand the test of what I may call cross-examination by Nature, that we become impressed with the conviction of their truth. Sometimes our object is the determination of numerical constants, with a view, it may be, to the practical application of science to the wants of life.

To illustrate what I am saying, allow me to refer to a very familiar example. From the earliest ages men must have observed the heavenly bodies. The great bulk of those brilliant points with which at night the sky is spangled when clouds permit of their being seen, retain the same relative positions night after night and year after year. But a few among them are seen to change their places relatively to the rest and to one another. The fact of this change is embodied in the very name, planet, by which these bodies are designated. I shall say nothing here about the establishment of the Copernican system: I shall assume that as known and admitted. The careful observations of astronomers on the apparent places, from time to time, of these wandering bodies among the fixed stars supplied us, in the first instance, with a wide basis of isolated facts. After a vast amount of labor, Kepler at last succeeded in discovering the three famous laws which go by his name. Here, then, we have the second stage; the vast assemblage of isolated facts are co-ordinated, and embraced in a few simple laws. As yet, however, we can not say that the idea of causation has entered in. But now Newton arises, and shows that the very same property of matter which causes an apple to fall to the earth, which causes our own bodies to press on the earth on which we stand, suffices to account for those laws which Kepler discovered-nay, more, those laws themselves are only very approximately true; and, when we consider the places of the planets, at times separated by a considerable interval, we are obliged to suppose that the elements of

* Presidential address delivered at the annual meeting of the Victoria Institute, on Tuesday, July 19, 1887.

their orbits have slowly undergone slight changes. But the simple law of universal gravitation, combined, of course, with the laws of motion, not only leads to Kepler's laws as a very close approximation to the actual motions, but also accounts for those slight changes which have just been mentioned as necessary to make Kepler's laws fit observation exactly. We are inevitably led to regard the attraction of gravitation as the cause which keeps the planets in their orbits.

But it may be said, What is the difference in the two cases? Is not the law of gravitation merely a simpler mode of expressing the observed facts of the planetary motions just like the somewhat less simple laws of Kepler? What right have we to introduce the idea of causation in the one case more than in the other?

The answer to this appears to be that in the one case, that of Kepler's laws, supposing them to be true, we have merely a statement of what, on that supposition, would be a fact regarding the motions of the planets, whereas in the other case the observed motions are referred to a property of matter of the operation of which in other and perfectly different phenomena we have independent evidence.

I have purposely omitted to mention the important difference between the two cases, which lies in the circumstance that Kepler's laws require correction to make them applicable to long intervals of time, whereas the law of gravitation shows no sign of failure; because, even if the former had been perfectly exact, however long the interval of time to which they were applied, I doubt if they would have carried with them the idea of causation.

To take another simple illustration, let us think of the propulsion of a bullet in an air-gun. We speak of the motion of the bullet as being caused by the elasticity of the compressed air. And the idea of causation comes in because we refer this particular instance of motion to a property of gas, of the existence and operation of which we have evidence in perfectly independent phenomena.

It is thus that in scientific investigation we endeavor to ascend from observed phenomena to their proximate causes; but, when we have arrived at these, the question presents itself, Can we in a similar manner regard these causes in turn as themselves the consequences of some cause stretching still further back in the chain of causation? If the motion of the bullet in an air-gun be caused by the elasticity of the compressed air, can we account for the elasticity of a gas? If the retention of the planets in their orbits be due to the attraction of gravitation, can we explain how it is that two material bodies should attract one another across the intervening space?

Till a time well on in the present century, we could only take the elasticity of gases as a fact, and deduce the consequences which flow from it. But the researches of Joule and Clausius and Maxwell and Crookes and others have accumulated so much evidence in favor of the general truth of the kinetic theory of gases, that we are now dis

posed not to rest in the elasticity of gases as an ultimate property beyond which we can not go, but to regard it as itself a consequence of the molecular constitution of bodies, and of the motions and mutual collisions of the ultimate molecules of a gas. Respecting the attraction of gravitation we have not at present made a similar advance. Speculations, indeed, have not been wanting on the part of those who have endeavored to account for it. But none of these so fits into the known phenomena of Nature as to carry with it a conviction of its truth. Yet there is one indication that though we can not at present explain the cause of gravitation, yet it may be explicable by what are called second causes. The mass of a body is measured by its inertia ; and, though we commonly think of a body of large mass as being heavy, and though we compare the masses of two bodies most easily and accurately through the intervention of weight, yet the idea of mass may be acquired, and means might easily be suggested by which the ratio of the masses of two bodies might be experimentally determined, without having recourse to gravitation at all. Now, according to the law of gravitation, the force with which a given body attracts another at a given distance is strictly proportional to the mass of the latter. If we suppose the attracting body to be the earth, and the attracted bodies to be in one case a brass weight, and in the other a piece of marble, it follows that if they make equilibrium when placed in the pans of a true balance-I make abstraction of the effect of the buoyancy of the air-their masses are strictly equal, and, accordingly, that weight is a true measure of mass. But there is no reason a priori, so far as with our present knowledge we can see, why this should be so. We know that if the bodies in the scale-pans were formed, one of brass and the other of iron, and there were a magnet concealed under the table on which the operator placed his balance, the masses would not be equal when there was equilibrium. But that the law is true, and that, accordingly, weight is a true measure of mass, follows with the highest probability from the third of Kepler's laws, and was proved experimentally by Newton, by experiments with pendulums. Newton's experiment has since been repeated by Bessel, with all the refinements of modern appliances, with the result that, so far as the most exact experiments enable us to decide, the law is strictly true. This is perhaps the only instance, as Sir William Thomson remarked to me in conversation, in which there is an exact agreement between two quantities, and yet we are unable to give any reason why they should agree. That such is the case, holds out some prospect of scientific men being able some day to explain gravitation itself—that is, to explain it as the result of some still higher law.

Such is the nature of our progress in scientific investigation. We collect facts; we endeavor to co-ordinate them and ascertain the laws which bind them together; we endeavor to refer these laws to their proximate causes, and to proceed step by step upward in the chain of

VOL. XXXII.-4

causation. Presently we arrive at a stage at which, even after long. trial, we do not see our way to going further. Yet we are not able to demonstrate that further progress in the same direction—that is, along the chain of secondary causation-is impossible. Science conducts us to a void which she can not fill.

It is on other grounds that we are led to believe in a Being who is the Author of Nature. A conclusion so important to mankind in general is not left to be established as the result of investigations which few have the leisure and ability to carry out. Doubtless, where it is accepted, the study of science enlarges our ideas respecting the greatness of that Being, and tends to keep in check notions of too anthropomorphic a character which we might form concerning him. Still, the subject-matter of scientific study is not, at least directly, theistic, and there have not been wanting a few instances of eminent scientists who not merely rejected Christianity, but apparently did not even believe in the being of a God.

The religious man, on the other hand, who knows little or nothing of science, is in the habit of contemplating the order of Nature not merely as the work of God, but in very great measure as his direct work. Of course, the concerns of every-day life present innumerable instances of the sequence of cause and effect; and few are now so ignorant of the very elements of science as not to allow that the sequence of day and night, of summer and winter, is proximately due to the rotation of the earth about its axis, and the oblique position of that axis with reference to the plane of the earth's orbit. But when we get beyond the region of what is familiarly known, still more when we get outside the limits of well-ascertained scientific conclusions, and enter a region which is still debatable ground, where men of science are attempting to push forward, and are framing hypotheses with a view to the ultimate establishment of a theory in case those hypotheses should stand the test of thorough examination when, I say, we get into this region, a man such as I have supposed may feel as if the scientists who were attempting to explore it were treading on holy ground; he may mentally charge them with irreverence; perhaps he may openly speak of them in a manner which implies that he attributes to them an intention to oppose revealed religion.

To take a particular example. I can imagine that a man such as I have supposed may have always been in the habit of regarding each one of the thousands and tens of thousands of species into which naturalists have divided the animal and vegetable kingdoms as having originated in an independent creative act; that the supposition may have become entwined among his religious beliefs. Such a man would be apprehensive of any attempt to introduce second causes in explanation of the observed fact of the great multiplicity of species.

Akin to the feeling which I have attempted to describe is another, against which we must be on our guard. The religious man is strong

« PreviousContinue »