Reinforcement Learning: An IntroductionRichard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability. The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporaldifference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning. 
What people are saying  Write a review
User ratings
5 stars 
 
4 stars 
 
3 stars 
 
2 stars 
 
1 star 

http://books.google.com/books?id=CAFR6IBF4xYC&printsec=frontcover
Contents
Introduction  3 
Evaluative Feedback  25 
Elementary Solution Methods  87 
A Unified View  161 
Generalization and Function Approximation  193 
Planning and Learning  227 
Dimensions of Reinforcement Learning  255 
Case Studies  261 
References  291 
Summary of Notation  313 